Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 289]
Внутри круга радиуса 1 м расположены
n точек. Доказать, что в круге или на
его границе существует точка, сумма расстояний от которой до всех точек не
меньше
n метров.
|
|
Сложность: 3 Классы: 10,11
|
Из отрезков, имеющих длины
a,
b и
c, можно составить треугольник.
Доказать, что из отрезков с длинами
,
,
также можно составить треугольник.
|
|
Сложность: 3 Классы: 7,8,9
|
Существует ли выпуклый четырёхугольник, у которого сумма длин диагоналей не меньше периметра?
|
|
Сложность: 3 Классы: 9,10,11
|
Дан выпуклый четырёхугольник и точка M внутри него. Доказать, что сумма расстояний от точки M до вершин четырёхугольника меньше суммы попарных расстояний между вершинами четырёхугольника.
|
|
Сложность: 3 Классы: 8,9,10
|
Докажите, что a²pq + b²qr + c²rp ≤ 0, если a, b, c – стороны треугольника; а p, q, r – любые числа, удовлетворяющие условию p + q + r = 0.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 289]