Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 152]
|
|
Сложность: 4- Классы: 8,9,10
|
Докажите, что всякую замкнутую ломаную периметра Р можно заключить в круг, радиус которого не превосходит Р/4.
Серединный перпендикуляр к стороне AB треугольника ABC пересекает сторону AC в точке K, причём точка K делит ломаную
ACB на две части равной длины. Докажите, что треугольник ABC –
равнобедренный.
|
|
Сложность: 4- Классы: 8,9,10
|
Даны N прямоугольных треугольников. У каждого выбрали по одному катету и нашли сумму их длин, затем нашли сумму длин оставшихся катетов и, наконец, нашли сумму длин всех гипотенуз. Оказалось, что три найденных числа являются длинами сторон некоторого прямоугольного треугольника. Докажите, что у всех исходных треугольников одно и то же отношение большего катета к меньшему, если
а) N = 2;
б) N – любое натуральное число, большее 1.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Даны N прямоугольных треугольников (N > 1). У каждого выбрали по одному катету и нашли сумму их длин, затем нашли сумму длин оставшихся катетов и, наконец, нашли сумму длин всех гипотенуз. Оказалось, что три найденных числа являются длинами сторон некоторого прямоугольного треугольника. Докажите, что все исходные треугольники подобны.
|
|
Сложность: 4- Классы: 10,11
|
На сторонах BC и AC правильного треугольника ABC отмечены точки X и Y соответственно.
Докажите, что из отрезков AX, BY и XY можно составить треугольник.
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 152]