Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 165]
Имеется шахматная доска с обычной раскраской (границы квадратов считаются
окрашенными в чёрный цвет).
Начертить на ней окружность наибольшего радиуса, целиком лежащую на чёрном.
|
|
Сложность: 4- Классы: 8,9,10
|
На стене висят двое правильно идущих совершенно одинаковых часов. Одни показывают московское время, другие – местное. Минимальное расстояние между концами их часовых стрелок равно m, а максимальное – M. Найдите расстояние между центрами этих часов.
Площадь треугольника ABC равна 10 см². Какое наименьшее
значение может принимать радиус описанной окружности треугольника ABC, если известно, что середины высот этого треугольника лежат на одной прямой?
Дан равносторонний треугольник ABC. Точка K – середина
стороны AB, точка M лежит на стороне BC, причём BM : MC = 1 : 3. На стороне AC выбрана точка P так, что периметр треугольника PKM – наименьший из возможных. В каком отношении точка P делит сторону AC?
|
|
Сложность: 4- Классы: 8,9,10
|
Расстоянием между двумя клетками бесконечной шахматной доски назовём минимальное число ходов в пути короля между этими клетками. На доске отмечены три клетки, попарные расстояния между которыми равны 100. Сколько существует клеток, расстояния от которых до всех трёх отмеченных равны 50?
Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 165]