Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 462]      



Задача 54989

Темы:   [ Две пары подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4-
Классы: 8,9

Площадь трапеции ABCD равна 23. Точка M на боковой стороне AB выбрана так, что  2MB = MA.  Точка N на боковой стороне CD выбрана так, что
3DN = CD.  Точка L – пересечение прямых DM и AN. Найдите площадь треугольника ALD, если  AD = 3BC.

Прислать комментарий     Решение

Задача 55004

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение площадей подобных треугольников ]
[ Удвоение медианы ]
Сложность: 4-
Классы: 8,9

Медианы треугольника равны 3, 4 и 5. Найдите площадь треугольника.

Прислать комментарий     Решение


Задача 55005

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение площадей подобных треугольников ]
[ Удвоение медианы ]
Сложность: 4-
Классы: 8,9

Медианы треугольника равны 5, 6 и 5. Найдите площадь треугольника.

Прислать комментарий     Решение


Задача 55037

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Правильный (равносторонний) треугольник ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9

На сторонах AB, AC и BC правильного треугольника ABC расположены соответственно точки C1, B1 и A1 так, что треугольник A1B1C1 – правильный. Отрезок BB1 пересекает сторону C1A1 в точке O, причём  BO/OB1 = k.  Найдите отношение площади треугольника ABC к площади треугольника A1B1C1.

Прислать комментарий     Решение

Задача 55038

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Правильный (равносторонний) треугольник ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9

На сторонах AB, AC и BC правильного треугольника ABC расположены соответственно точки C1, B1 и A1, причём треугольник A1B1C1 является правильным. Высота BD треугольника ABC пересекает сторону A1C1 в точке O. Найдите отношение BO/BD, если  A1B1/AB = n.

Прислать комментарий     Решение

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 462]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .