ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 462]
O – точка пересечения диагоналей трапеции ABCD. Прямая, проходящая через C и точку, симметричную B относительно O, пересекает основание AD в точке K. Докажите, что SAOK = SAOB + SDOK.
На сторонах AB, BC, CD и DA произвольного четырёхугольника ABCD взяты точки K, L, M и N соответственно. Обозначим через S1, S2, S3 и S4 площади треугольников AKN, BKL, CLM и DMN соответственно. Докажите, что
На сторонах AB, BC и CA произвольного треугольника ABC взяты точки C1, A1 и B1 соответственно. Обозначим через S1, S2 и S3 площади треугольников AB1C1, BA1C1, CA1B1 соответственно. Докажите, что
Точки E и F – середины сторон AB и AD параллелограмма ABCD, а отрезки CE и BF пересекаются в точке K. Точка M лежит на отрезке EC, причём BM || KD. Докажите, что площади треугольника KFD и трапеции KBMD равны.
В равнобедренной трапеции ABCD углы при основании AD равны
30o, диагональ AC является биссектрисой угла BAD.
Биссектриса угла BCD пересекает основание AD в точке M,
а отрезок BM пересекает диагональ AC в точке N. Найдите
площадь треугольника ANM, если площадь трапеции ABCD равна
2 +
Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 462]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке