ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 462]
В равнобедреной трапеции ABCD углы при основании AD равны
45o, диагональ AC является биссектрисой угла BAD.
Биссектриса угла BCD пересекает основание AD в точке K,
а отрезок BK пересекает диагональ AC в точке Q. Найдите
площадь треугольника ABQ, если площадь трапеции ABCD равна
3 + 2
Дан выпуклый четырёхугольник площади S. Внутри него выбирается точка и отображается симметрично относительно середин его сторон. Получаются четыре вершины нового четырёхугольника. Найдите его площадь.
В треугольнике ABC биссектрисы AD и BE пересекаются в точке O. Найдите отношение площади треугольника ABC к площади четырёхугольника ODCE, зная, что BC = a, AC = b, AB = c.
В некоторый угол B вписаны две непересекающиеся окружности. Окружность большего радиуса касается сторон этого угла в точках A и C, меньшего — в точках A1 и C1(точки A, A1 и C, C1 лежат на разных сторонах угла B). Прямая AC1 пересекает окружности большего и меньшего радиусов в точках E и F соответственно. Найдите отношение площадей треугольников ABC1 и A1BC1, если A1B = 2, EF = 1, а длина AE равна среднему арифметическому длин BC1 и EF.
Через произвольную точку, взятую внутри треугольника, проведены три прямые параллельные сторонам треугольника. При этом треугольник разбивается на три параллелограмма и три треугольника. Докажите, что произведение площадей параллелограммов в восемь раз больше произведения площадей треугольников.
Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 462]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке