ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 1221]      



Задача 111327

Темы:   [ Десятичная система счисления ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3-
Классы: 7,8,9

Верно ли, что к любому числу, равному произведению двух последовательных натуральных чисел, можно приписать в конце какие-то две цифры так, что получится квадрат натурального числа?

Прислать комментарий     Решение

Задача 111358

Темы:   [ Тождественные преобразования ]
[ Процессы и операции ]
Сложность: 3-
Классы: 8,9

На бумажке записаны 1 и некоторое нецелое число x. За один ход разрешается записать на бумажку сумму или разность каких-нибудь двух уже записанных чисел или записать число, обратное к какому-нибудь из уже записанных чисел. Можно ли за несколько ходов получить на бумажке
число x²?

Прислать комментарий     Решение

Задача 116817

Темы:   [ Математическая логика (прочее) ]
[ Подсчет двумя способами ]
Сложность: 3-
Классы: 8,9

Про группу из пяти человек известно, что:

   Алеша на 1 год старше Алексеева,
   Боря на 2 года старше Борисова,
   Вася на 3 года старше Васильева,
   Гриша на 4 года старше Григорьева,
   а еще в этой группе есть Дима и Дмитриев.

Кто старше и на сколько: Дима или Дмитриев?

Прислать комментарий     Решение

Задача 32787

Темы:   [ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 7,8

Можно ли найти 57 различных двузначных чисел, чтобы сумма никаких двух из них не равнялась 100?
Прислать комментарий     Решение


Задача 35476

Темы:   [ Функции одной переменной. Непрерывность ]
[ Итерации ]
Сложность: 3
Классы: 10,11

Пусть f(x) - некоторый многочлен, про который известно, что уравнение f(x)=x не имеет корней. Докажите, что тогда и уравнение f(f(x))=x не имеет корней.
Прислать комментарий     Решение


Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .