Страница:
<< 121 122 123 124
125 126 127 >> [Всего задач: 1221]
|
|
Сложность: 4- Классы: 9,10
|
Дано 29-значное число X = a1...a29 (0 ≤ ak ≤ 9, a1 ≠ 0). Известно, что для всякого k цифра ak встречается в записи данного числа a30–k раз (например, если a10 = 7, то цифра a20 встречается семь раз). Найти сумму цифр числа X.
|
|
Сложность: 4- Классы: 7,8,9
|
В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть
прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика
B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в
четвёртую вершину квадрата?
|
|
Сложность: 4- Классы: 9,10,11
|
С натуральным числом K производится следующая операция: оно представляется в виде произведения простых сомножителей K = p1p2...pn; затем вычисляется сумма p1 + p2 + ... + pn + 1. С полученным числом производится то же самое, и т.д.
Доказать, что образующаяся последовательность, начиная с некоторого номера, будет периодической.
|
|
Сложность: 4- Классы: 7,8,9
|
Сумма 100 натуральных чисел, каждое из которых не больше 100, равна 200.
Доказать, что из них можно выбрать несколько чисел, сумма которых равна 100.
|
|
Сложность: 4- Классы: 8,9,10
|
Доказать, что 11983 + 21983 + ... + 19831983 делится на 1 + ... + 1983.
Страница:
<< 121 122 123 124
125 126 127 >> [Всего задач: 1221]