ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 122 123 124 125 126 127 128 >> [Всего задач: 1221]      



Задача 79489

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9

Известно, что в кодовом замке исправны только кнопки с номерами 1, 2, 3, а код этого замка трёхзначен и не содержит других цифр. Написать последовательность цифр наименьшей длины, наверняка открывающую этот замок (замок открывается, как только подряд и в правильном порядке нажаты все три цифры его кода).
Прислать комментарий     Решение


Задача 79512

Темы:   [ Объединение, пересечение и разность множеств ]
[ Разбиения на пары и группы; биекции ]
[ Турниры и турнирные таблицы ]
Сложность: 4-
Классы: 7,8,9

В классе организуется турнир по перетягиванию каната. В турнире ровно по одному разу должны участвовать всевозможные команды, которые можно составить из учащихся этого класса (кроме команды всего класса). Доказать, что каждая команда учащихся будет соревноваться с командой всех остальных учащихся класса.

Прислать комментарий     Решение

Задача 79612

Темы:   [ Десятичная система счисления ]
[ Разбиения на пары и группы; биекции ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4-
Классы: 9,10

Каких нечётных натуральных чисел  n < 10000  больше: тех, для которых число, образованное четырьмя последними цифрами числа n9, больше n, или тех, для которых оно меньше n?

Прислать комментарий     Решение

Задача 88335

Темы:   [ Четность и нечетность ]
[ Подсчет двумя способами ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8,9

Можно ли в кружочках расставить все цифры от 0 до 9 так, чтобы сумма трёх чисел по любому из шести отрезков была бы одной и той же?

Прислать комментарий     Решение

Задача 97868

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
[ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 7,8,9,10

В таблицу 10×10 нужно записать в каком-то порядке цифры  0, 1, 2, 3, ..., 9  так, что каждая цифра встречалась бы 10 раз.
  а) Можно ли это сделать так, чтобы в каждой строке и в каждом столбце встречалось не более четырёх различных цифр?
  б) Докажите, что найдётся строка или столбец, в которой (в котором) встречается не меньше четырёх различных чисел.

Прислать комментарий     Решение

Страница: << 122 123 124 125 126 127 128 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .