Страница:
<< 120 121 122 123
124 125 126 >> [Всего задач: 1235]
|
|
|
Сложность: 4- Классы: 8,9,10
|
В белом клетчатом квадрате 100×100 закрашено чёрным несколько клеток (не обязательно соседних). В каждой горизонтали или вертикали, где есть чёрные клетки, их количество нечётно, так что одна из клеток – средняя по счёту. Все чёрные клетки, средние по горизонтали, стоят в разных вертикалях. Все чёрные клетки, средние по вертикали, стоят в разных горизонталях.
а) Докажите, что найдётся клетка, средняя и по горизонтали, и по вертикали.
б) Обязательно ли каждая клетка, средняя по горизонтали – средняя и по вертикали?
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
Петя и Вася по очереди красят рёбра $N$-угольной пирамиды: Петя – в красный цвет, а Вася – в зелёный (ребро нельзя красить дважды). Начинает Петя. Выигрывает Вася, если после того, как все рёбра окрашены, из любой вершины пирамиды в любую другую вершину ведёт ломаная, состоящая из зелёных рёбер. В противном случае выигрывает Петя. Кто из игроков может действовать так, чтобы всегда выигрывать, как бы ни играл его соперник?
|
|
|
Сложность: 4- Классы: 8,9,10
|
Для любого натурального
числа K существует бесконечно много натуральных
чисел Т, не содержащих в десятичной записи нулей и таких, что сумма цифр
числа KТ равна сумме цифр
числа Т. Докажите это.
|
|
|
Сложность: 4- Классы: 9,10,11
|
Исследуйте, сколько решений имеет система уравнений
x² + y² + xy = a,
x² – y² = b,
где а и b – некоторые данные действительные числа.
|
|
|
Сложность: 4- Классы: 7,8,9
|
Из двухсот чисел: 1, 2, 3, 4, 5, 6, 7, ..., 199, 200 произвольно выбрали сто
одно число.
Доказать, что среди выбранных чисел найдутся два, из которых одно
делится на другое.
Страница:
<< 120 121 122 123
124 125 126 >> [Всего задач: 1235]