Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 57]
Дан параллелограмм
ABCD, у которого
AB = 5,
AD = 2

+ 2 и
BAD = 30
o.
На стороне
AB взята такая точка
K, что
AK :
KB = 4 : 1. Через
точку
K параллельно
AD проведена прямая. На этой прямой внутри параллелограмма выбрана точка
L, а на стороне
AD выбрана точка
M так, что
AM =
KL. Прямые
BM и
CL пересекаются в
точке
N. Найдите угол
BKN.
Дан параллелограмм
KLMN, у которого
KL = 8,
KN = 3

+

и
LKN = 45
o.
На стороне
KL взята такая точка
A, что
KA :
AL = 3 : 1. Через
точку
A параллельно
LM проведена прямая, на которой внутри параллелограмма выбрана точка
B, а на стороне
KN выбрана точка
C так, что
KC =
AB. Прямые
LC и
MB пересекаются в
точке
D. Найдите угол
LAD.
Пусть O – центр описанной окружности треугольника ABC. На сторонах AB и BC выбраны точки M и N соответственно, причём 2∠MON = ∠AOC. Докажите, что периметр треугольника MBN не меньше стороны AC.
|
|
|
Сложность: 5- Классы: 10,11
|
В пространстве даны точка
O и
n попарно непараллельных прямых. Точка
O
ортогонально проектируется на все данные прямые. Каждая из получившихся точек
снова проектируется на все данные прямые и т.д. Существует ли шар, содержащий
все точки, которые могут быть получены таким образом?
На окружности радиуса 1 отмечено 100 точек.
Докажите, что на окружности найдётся точка, сумма расстояний от которой до всех отмеченных точек будет не меньше 100.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 57]