Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 540]      



Задача 111418

Темы:   [ Отношение объемов ]
[ Правильная призма ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

Точки O и O1 – соответственно центры оснований ABCD и A1B1C1D1 правильной четырёхугольной призмы. Правильный восьмиугольник, четыре вершины которого совпадают с серединами сторон квадрата ABCD , служит основанием пирамиды с вершиной в точке O1 . Найдите объём общей части этой пирамиды и пирамиды OA1B1C1D1 , если объём призмы равен V .
Прислать комментарий     Решение


Задача 111610

Темы:   [ Площадь сечения ]
[ Сфера, вписанная в пирамиду ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

В правильной четырёхугольной пирамиде SABCD с вершиной S сторона основания пирамиды равна b , а высота пирамиды равна b . Шар, вписанный в эту пирамиду, касается боковой грани SAD в точке K . Найдите площадь сечения пирамиды, проходящего через ребро AB и точку K .
Прислать комментарий     Решение


Задача 111612

Темы:   [ Площадь сечения ]
[ Сфера, вписанная в пирамиду ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

Шар, вписанный в правильную пирамиду ABCD , касается грани ADC в точке K . Через сторону AB основания ABC пирамиды и точку K проведено сечение. Найдите площадь этого сечения, если сторона основания пирамиды равна b , а высота пирамиды равна b .
Прислать комментарий     Решение


Задача 116076

Темы:   [ Четырехугольная пирамида ]
[ Цилиндр ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

Bсе ребра правильной четырехугольной пирамиды равны 1, а все вершины лежат на боковой поверхности (бесконечного) прямого кругового цилиндра радиуса R. Найдите все возможные значения R.

Прислать комментарий     Решение

Задача 98059

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Свойства сечений ]
[ Усеченная пирамида ]
[ Выпуклые тела ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 9,10,11

Существует ли выпуклый многогранник, одно из сечений которого – треугольник (сечение не проходит через вершины), и в каждой вершине сходятся
  а) не меньше пяти рёбер,
  б) ровно пять рёбер?

Прислать комментарий     Решение

Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 540]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .