ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 512]      



Задача 116170

Темы:   [ Вспомогательные подобные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Замечательные точки и линии в треугольнике (прочее) ]
Сложность: 4
Классы: 8,9

Дан треугольник ABC. Tочки A1, B1 и C1 симметричны его вершинам относительно противоположных сторон. C2 – точка пересечения прямых AB1 и BA1, точки A2 и B2 определяются аналогично. Докажите, что прямые A1A2, B1B2 и C1C2 параллельны.

Прислать комментарий     Решение

Задача 56506

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4+
Классы: 8,9

На неравных сторонах AB и AC треугольника ABC внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине.
  а) M – точка медианы AA1 (или её продолжения), равноудаленная от точек B1 и C1. Докажите, что  ∠B1MC1 = φ.
  б) O – точка серединного перпендикуляра к отрезку BC, равноудаленная от точек B1 и C1. Докажите, что  ∠B1OC1 = 180° – φ.

Прислать комментарий     Решение

Задача 57373

 [Неравенство Птолемея]
Темы:   [ Вспомогательные подобные треугольники ]
[ Четырехугольник (неравенства) ]
[ Теорема Птолемея ]
[ Неравенство треугольника (прочее) ]
Сложность: 4+
Классы: 8,9,10

Дан четырёхугольник ABCD. Докажите, что  AC·BD ≤ AB·CD + BC·AD.

Прислать комментарий     Решение

Задача 108043

Темы:   [ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
[ Выход в пространство ]
Сложность: 4+
Классы: 8,9

В трапеции ABCD  AB – основание,  AC = BCH – середина AB. Пусть l – прямая, проходящая через точку H и пересекающая прямые AD и BD в точках P и Q соответственно. Докажите, что либо углы ACP и QCB равны, либо их сумма равна 180°.

Прислать комментарий     Решение

Задача 108155

Темы:   [ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Отношения линейных элементов подобных треугольников ]
[ Вписанные четырехугольники (прочее) ]
[ Вспомогательная окружность ]
Сложность: 4+
Классы: 8,9,10

Окружность S1, проходящая через вершины A и B треугольника ABC, пересекает сторону BC в точке D. Окружность S2, проходящая через вершины B и C, пересекает сторону AB в точке E и окружность S1 вторично в точке F. Оказалось, что точки A, E, D, C лежат на окружности S3 с центром O. Докажите, что угол BFO – прямой.

Прислать комментарий     Решение

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .