Страница:
<< 23 24 25 26 27 28
29 >> [Всего задач: 145]
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Верно ли, что при любом n правильный 2n-угольник является проекцией некоторого многогранника, имеющего не более, чем n + 2 грани?
|
|
Сложность: 5- Классы: 10,11
|
В тетраэдре $ABCD$ скрещивающиеся рёбра попарно
равны. Через середину отрезка $AH_A$, где $H_A$ – точка пересечения
высот грани $BCD$, провели прямую $h_A$ перпендикулярно плоскости
$BCD$. Аналогичным образом определили точки $H_B$, $H_C$, $H_D$ и
построили прямые $h_B$, $h_C$, $h_D$ соответственно для трёх других
граней тетраэдра. Докажите, что прямые $h_A$, $h_B$, $h_C$, $h_D$
пересекаются в одной точке.
|
|
Сложность: 5 Классы: 10,11
|
Внутри тетраэдра расположен треугольник, проекции которого на 4 грани
тетраэдра имеют площади
P1,
P2,
P3,
P4. Докажите, что а) в
правильном тетраэдре
P1 ≤
P2 +
P3 +
P4; б) если
S1,
S2,
S3,
S4
— площади соответствующих граней тетраэдра, то
P1S1 ≤
P2S2 +
P3S3 +
P4S4.
|
|
Сложность: 6 Классы: 10,11
|
Верно ли, что для любых четырёх попарно скрещивающихся прямых можно
так выбрать по одной точке на каждой из них, чтобы эти точки были вершинами а)
трапеции, б) параллелограмма?
|
|
Сложность: 6 Классы: 10,11
|
В прямоугольном параллелепипеде проведено сечение, являющееся шестиугольником.
Известно, что этот шестиугольник можно поместить в некоторый
прямоугольник
Π . Докажите, что в прямоугольник
Π можно
поместить одну из граней параллелепипеда.
Страница:
<< 23 24 25 26 27 28
29 >> [Всего задач: 145]