ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 189]      



Задача 87078

Темы:   [ Теорема о трех перпендикулярах ]
[ Ортоцентрический тетраэдр ]
Сложность: 4
Классы: 8,9

Высота пирамиды ABCD , опущенная из вершины D , проходит через точку пересечения высот треугольника ABC . Кроме того, известно, что DB = b , DC = c , BDC = 90o . Найдите отношение площадей граней ADB и ADC .
Прислать комментарий     Решение


Задача 109267

Темы:   [ Теорема о трех перпендикулярах ]
[ Расстояние между скрещивающимися прямыми ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 10,11

Основание прямой треугольной призмы ABCA1B1C1 – равнобедренный прямоугольный треугольник с катетами AC = BC = a . Вершины M и N правильного тетраэдра MNPQ лежат на прямой CA1 , а вершины P и Q – на прямой AB1 . Найдите: а) объём призмы; б) расстояние между серединами отрезков MN и PQ .
Прислать комментарий     Решение


Задача 109268

Темы:   [ Теорема о трех перпендикулярах ]
[ Расстояние между скрещивающимися прямыми ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 10,11

Сторона основания правильной треугольной призмы ABCA1B1C1 равна a . Вершины M и N правильного тетраэдра MNPQ лежат на прямой, проходящей через точки C1 и B , а вершины P и Q – на прямой A1C . Найдите: а) объём призмы; б) расстояние между серединами отрезков MN и PQ .
Прислать комментарий     Решение


Задача 109269

Темы:   [ Теорема о трех перпендикулярах ]
[ Расстояние между скрещивающимися прямыми ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 10,11

В прямоугольном параллелепипеде ABCDA1B1C1D1 рёбра AB , BC и BB1 равны соответственно 2a , a и a , а точка E – середина BC . Вершины M и N правильного тетраэдра MNPQ лежат на прямой C1E , а вершины P и Q – на прямой, проходящей через точку B1 и пересекающей прямую AD в точке F . Найдите: а) отрезок DF ; б) расстояние между серединами отрезков MN и PQ .
Прислать комментарий     Решение


Задача 110260

Тема:   [ Признаки перпендикулярности ]
Сложность: 4
Классы: 10,11

Пусть A , B , C и D – четыре точки в пространстве, для которых AB2 + CD2 = BC2 + AD2 . Докажите, что прямые AC и BD перпендикулярны.
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 189]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .