ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости дано n прямых общего положения. Чему равно число образованных ими треугольников? Правильный многоугольник A1...An вписан в окружность радиуса R с центром O, X — произвольная точка. Найдите сумму Sl(x) = g0,l(x) – g1,l–1(x) + g2,l–2(x) – ... + (–1)lgl,0(x).
Точка O расположена в сечении BDD'B' прямоугольного параллелепипеда
ABCDA'B'C'D' размером 4× 6× 9
так, что |
Страница: << 160 161 162 163 164 165 166 >> [Всего задач: 1280]
Четырёхугольник ABCD вписан в окружность с центром O. Описанные окружности треугольников ABO и CDO, пересеклись второй раз в точке F. Докажите, что описанная окружность треугольника AFD проходит через точку E пересечения отрезков AC и BD.
В треугольнике одна из средних линий больше одной из медиан. Докажите, что этот треугольник – тупоугольный.
Стороны AB, BC, CD и DA четырёхугольника ABCD касаются некоторой окружности в точках K, L, M и N соответственно, S – точка пересечения отрезков KM и LN. Известно, что вокруг четырёхугольника SKBL можно описать окружность. Докажите, что вокруг четырёхугольника SNDM также можно описать окружность.
На боковых сторонах AB и BC равнобедренного треугольника ABC взяты точки K и L соответственно, так что AK + LC = KL. Из середины M отрезка KL провели прямую, параллельную BC, и эта прямая пересекла сторону AC в точке N. Найдите величину угла KNL.
В треугольнике ABC AB = a, AC = b, точка O – центр описанной окружности. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.
Страница: << 160 161 162 163 164 165 166 >> [Всего задач: 1280]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке