Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

У Юры есть калькулятор, который позволяет умножать число на 3, прибавлять к числу 3 или (если число делится на 3 нацело) делить на 3. Как на этом калькуляторе получить из числа 1 число 11?

Вниз   Решение


Найдите радиусы вписанной и вневписанных окружностей треугольника со сторонами 5, 12 и 13.

ВверхВниз   Решение


Фили и Кили играют в шахматы. Кроме шахматной доски у них есть одна ладья, которую они поставили в правый нижний угол, и делают ей ходы по очереди, причем ходить разрешается только вверх или влево (на любое количество клеток). Кто не может сделать хода, тот проиграл. Кили ходит первым. Кто выиграет при правильной игре?

ВверхВниз   Решение


Маленькие детки кушали конфетки. Каждый съел на 7 конфет меньше, чем все остальные вместе, но все же больше одной конфеты.
Сколько всего конфет было съедено?

ВверхВниз   Решение


Имеются чашечные весы без гирь и 3 одинаковые по внешнему виду монеты, одна из которых фальшивая: она легче настоящих (настоящие монеты одного веса). Сколько надо взвешиваний, чтобы определить фальшивую монету?

ВверхВниз   Решение


На едином экзамене 333 ученика допустили в общей сложности 1000 ошибок.
Возможно ли при этом, что учеников, сделавших более чем по 5 ошибок, оказалось больше, чем учеников, сделавших менее чем по 4 ошибки?

Вверх   Решение

Задачи

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 489]      



Задача 31089

Темы:   [ Ориентированные графы ]
[ Обход графов ]
[ Индукция (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 6,7,8

В стране каждые два города соединены дорогой с односторонним движением. Доказать, что можно проехать по всем городам, побывав в каждом по одному разу (то есть что в полном ориентированном графе есть гамильтонов путь).

Прислать комментарий     Решение

Задача 60852

 [Метод спуска]
Темы:   [ Уравнения в целых числах ]
[ Метод спуска ]
[ Арифметика остатков (прочее) ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Докажите, что уравнения
  а)  8x4 + 4y4 + 2z4 = t4;
  б)  x² + y² + z² = 2xyz;
  в)  x² + y² + z² + u² = 2xyzu;
  г)  3n = x² + y²
не имеют решений в натуральных числах.

Прислать комментарий     Решение

Задача 78303

Темы:   [ Индукция (прочее) ]
[ Турниры и турнирные таблицы ]
[ Ориентированные графы ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

В шахматном турнире каждый участник сыграл с каждым из остальных одну партию.
Доказать, что участников можно так занумеровать, что окажется, что ни один участник не проиграл непосредственно за ним следующему.

Прислать комментарий     Решение

Задача 98287

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Медиана, проведенная к гипотенузе ]
[ Наибольший треугольник ]
Сложность: 4-
Классы: 10,11

Прямоугольник разбит на прямоугольные треугольники, граничащие друг с другом только по целым сторонам, так, что общая сторона двух треугольников всегда служит катетом одного и гипотенузой другого. Докажите, что отношение большей стороны прямоугольника к меньшей не менее 2.

Прислать комментарий     Решение

Задача 98349

Темы:   [ Теория игр (прочее) ]
[ Построение треугольников по различным элементам ]
[ Правильный (равносторонний) треугольник ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4-
Классы: 8,9,10

Играют двое, ходят по очереди. Первый ставит на плоскости красную точку, второй в ответ ставит на свободные места 10 синих точек. Затем опять первый ставит на свободное место красную точку, второй ставит на свободные места 10 синих, и т.д. Первый считается выигравшим, если какие-то три красные точки образуют правильный треугольник. Может ли второй ему помешать?

Прислать комментарий     Решение

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 489]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .