ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]      



Задача 79452

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9

Сумма пяти неотрицательных чисел равна единице.
Докажите, что их можно расставить по кругу так, что сумма всех пяти попарных произведений соседних чисел будет не больше ⅕.

Прислать комментарий     Решение

Задача 79473

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

Числа a1, a2, ..., a1985 представляют собой переставленные в некотором порядке числа 1, 2, ..., 1985. Каждое число ak умножается на его номер k, а затем среди полученных 1985 произведений выбирается наибольшее. Доказать, что оно не меньше, чем 993².

Прислать комментарий     Решение

Задача 105133

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Формулы сокращенного умножения (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 7,8,9

Про положительные числа a, b, c известно, что  1/a + 1/b + 1/c ≥ a + b + c.  Докажите, что  a + b + c ≥ 3abc.

Прислать комментарий     Решение

Задача 109543

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Исследование квадратного трехчлена ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 8,9,10

Докажите, что для любых действительных чисел a и b справедливо неравенство  a² + ab + b² ≥ 3(a + b – 1).

Прислать комментарий     Решение

Задача 30928

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 6,7

Докажите, что если  x + y + z ≥ xyz,  то  x² + y² + z² ≥ xyz.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .