ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Рассмотрим прямоугольник ABCD , в котором AB = 2 , BC = 3 . Отрезок KM параллелен AB (см.рис.), расположен на расстоянии 1 от плоскости ABCD и KM = 5 . Найдите объём многогранника ABCDKM .

Вниз   Решение


Через точку пересечения диагоналей трапеции проведена прямая, параллельная основанию и пересекающая боковые стороны в точках E и F. Отрезок EF равен 2. Найдите основания, если их отношение равно 4.

ВверхВниз   Решение


В треугольной пирамиде ABCD известно, что DC = 9 , DB = AD , а ребро AC перпендикулярно грани ABD . Сфера радиуса 2 касается грани ABC , ребра DC , а также грани DAB , в точке пересечения её медиан. Найдите объём пирамиды.

ВверхВниз   Решение


В комнате находятся 85 воздушных шаров  — красных и синих. Известно, что: 1) по крайней мере один из шаров красный; 2) из каждой произвольно выбранной пары шаров по крайней мере один синий. Сколько в комнате красных шаров?

ВверхВниз   Решение


Вписанная окружность неравнобедренного треугольника ABC касается сторон AB, BC и ABC в точках C1, A1 и B1 соответственно. Описанная окружность треугольника A1BC1 пересекает прямые B1A1 и B1C1 в точках A0 и C0 соответственно. Докажите, что ортоцентр H треугольника A0BC0, центр I вписанной окружности треугольника ABC и середина M стороны AC лежат на одной прямой.

ВверхВниз   Решение


Докажите, что если α , β и γ – углы остроугольного треугольника, то sinα + sinβ + sinγ > 2 .

ВверхВниз   Решение


n – натуральное число,  n ≥ 4.  Докажите, что  n! ≥ 2n.

ВверхВниз   Решение


В параллелограмме ABCD опустили перпендикуляр BH на сторону AD. На отрезке BH отметили точку M, равноудалённую от точек C и D. Пусть точка K – середина стороны AB. Докажите, что угол MKD прямой.

ВверхВниз   Решение


На стороне AB треугольника ABC между точками A и B взята точка D, причём AD : AB = $ \alpha$ ($ \alpha$ < 1); на стороне BC между точками B и C взята точка E, причём BE : BC = $ \beta$ ($ \beta$ < 1). Через точку E проведена прямая, параллельная стороне AC и пересекающая сторону AB в точке F. Найдите отношение площадей треугольников BDE и BEF.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 290]      



Задача 107620

Темы:   [ Инварианты ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 7,8,9

На каждом километре шоссе между сёлами Ёлкино и Палкино стоит столб с табличкой, на одной стороне которой написано, сколько километров до Ёлкино, а на другой – до Палкино. Боря заметил, что на каждом столбе сумма всех цифр равна 13. Каково расстояние от Ёлкино до Палкино?

Прислать комментарий     Решение

Задача 108406

Темы:   [ Инварианты ]
[ Процессы и операции ]
Сложность: 3
Классы: 7,8,9

На доске написаны числа 1 и 2. Каждый день научный консультант Выбегалло заменяет два написанных числа на их среднее арифметическое и среднее гармоническое.
а) Однажды одним из написанных чисел (каким — неизвестно) оказалось 941664/665857. Каким в этот момент было другое число?
б) Будет ли когда-нибудь написано число 35/24?
Прислать комментарий     Решение


Задача 109960

Темы:   [ Полуинварианты ]
[ Процессы и операции ]
[ Теория игр (прочее) ]
Сложность: 3
Классы: 8

В колоде 52 карты, по 13 каждой масти. Ваня вынимает из колоды по одной карте. Вынутые карты в колоду не возвращаются. Каждый раз перед тем, как вынуть карту, Ваня загадывает какую-нибудь масть. Докажите, что если Ваня каждый раз будет загадывать масть, карт которой в колоде осталось не меньше, чем карт любой другой масти, то загаданная масть совпадет с мастью вынутой карты не менее 13 раз.
Прислать комментарий     Решение


Задача 30769

Тема:   [ Инварианты ]
Сложность: 3
Классы: 7,8

На доске написано число 8n. У него вычисляется сумма цифр, у полученного числа вновь вычисляется сумма цифр, и так далее, до тех пор, пока не получится однозначное число. Что это за число, если n = 1989?

Прислать комментарий     Решение

Задача 35475

Темы:   [ Полуинварианты ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 8,9,10

На квадратном поле 10*10 девять клеток 1*1 поросли бурьяном. После этого бурьян может распространиться на клетку, у которой не менее двух соседних клеток уже поросли бурьяном. Докажите, что тем не менее бурьян не сможет распространиться на все клетки.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 290]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .