ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 512]      



Задача 103938

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Теорема синусов ]
[ Угол между касательной и хордой ]
[ ГМТ - прямая или отрезок ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10

Внутри вписанного четырёхугольника ABCD существует точка K, расстояния от которой до сторон ABCD пропорциональны этим сторонам.
Доказать, что K – точка пересечения диагоналей ABCD.

Прислать комментарий     Решение

Задача 110187

Темы:   [ Биссектриса делит дугу пополам ]
[ Вписанные и описанные окружности ]
[ Диаметр, основные свойства ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9,10

В треугольнике ABC  ( AB < BC)  точка I – центр вписанной окружности, M – середина стороны AC, N – середина дуги ABC описанной окружности.
Докажите, что  ∠IMA = ∠INB.

Прислать комментарий     Решение

Задача 116952

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Общая касательная к двум окружностям ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Три попарно непересекающиеся окружности ωx, ωy, ωz радиусов rx, ry, rz лежат по одну сторону от прямой t и касаются её в точках X, Y, Z соответственно. Известно, что Y – середина отрезка XZ,  rx = rz = r,  а  ry > r.  Пусть p – одна из общих внутренних касательных к окружностям ωx и ωy, а q – одна из общих внутренних касательных к окружностям ωy и ωz. В пересечении прямых p, q, t образовался неравнобедренный треугольник. Докажите, что радиус его вписанной окружности равен r.

Прислать комментарий     Решение

Задача 64803

Темы:   [ Гомотетия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
[ ГМТ - прямая или отрезок ]
[ Средняя линия треугольника ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9,10

Автор: Tran Quang Hung

Пусть M – середина хорды AB окружности с центром O. Точка K симметрична M относительно O, P – произвольная точка окружности. Перпендикуляр к AB в точке A и перпендикуляр к PK в точке P пересекаются в точке Q. Точка H – проекция P на AB. Докажите, что прямая QB делит отрезок PH пополам.

Прислать комментарий     Решение

Задача 108146

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Касающиеся окружности ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9

Автор: Сонкин М.

На медиане CD треугольника ABC отмечена точка E. Окружность S1, проходящая через точку E и касающаяся прямой AB в точке A, пересекает сторону AC в точке M. Окружность S2, проходящая через точку E и касающаяся прямой AB в точке B, пересекает сторону BC в точке N. Докажите, что описанная окружность треугольника CMN касается окружностей S1 и S2.

Прислать комментарий     Решение

Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .