Страница:
<< 93 94 95 96
97 98 99 >> [Всего задач: 512]
Дан четырёхугольник ABCD, вписанный в окружность ω. Касательная к ω, проведённая через точку A, пересекает продолжение стороны BC за точку B в точке K, а касательная к ω, проведённая через точку B, пересекает продолжение стороны AD за точку A в точке M. Известно, что AM = AD и BK = BC. Докажите, что ABCD – трапеция.
|
|
Сложность: 4 Классы: 10,11
|
Основанием прямоугольного параллелепипеда АВСDA1B1C1D1 является квадрат АВСD.
Найдите наибольшую возможную величину угла между прямой BD1 и плоскостью ВDС1.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Две окружности
S1 и
S2 касаются внешним образом в точке
F. Их общая касательная касается
S1 и
S2 в точках
A и
B соответственно. Прямая, параллельная
AB, касается окружности
S2 в точке
C и пересекает окружность
S1 в точках
D и
E. Докажите, что общая хорда описанных окружностей треугольников
ABC и
BDE, проходит через точку
F.
|
|
Сложность: 4 Классы: 10,11
|
Через вершину A тетраэдра ABCD проведена плоскость, касательная
к описанной около него сфере. Докажите, что линии пересечения этой плоскости
с плоскостями граней ABC, ACD и ABD образуют шесть равных углов тогда и только тогда, когда AB·CD = AC·BD = AD·BC.
Вписанная окружность треугольника ABC имеет центр I и касается сторон AB, BC, CA в точках C1, A1, B1 соответственно. Обозначим через L основание биссектрисы угла B, а через K – точку пересечения прямых
B1I и A1C1. Докажите, что KL || BB1.
Страница:
<< 93 94 95 96
97 98 99 >> [Всего задач: 512]