ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 512]      



Задача 65394

Темы:   [ Прямоугольные параллелепипеды ]
[ Примеры и контрпримеры. Конструкции ]
[ Развертка помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9,10,11

Дана коробка (прямоугольный параллелепипед), по поверхности (но не внутри) которой ползает муравей. Изначально муравей сидит в углу. Верно ли, что среди всех точек поверхности на наибольшем расстоянии от муравья находится противоположный угол? (Расстоянием между двумя точками считаем длину соединяющего их кратчайшего пути по поверхности параллелепипеда.)

Прислать комментарий     Решение

Задача 65674

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Средняя линия треугольника ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9,10

Точка O – центр описанной окружности остроугольного треугольника ABC. Прямая, перпендикулярная стороне AC, пересекает сторону BC и прямую AB в точках Q и P соответственно. Докажите, что точки B, O и середины отрезков AP и CQ лежат на одной окружности.

Прислать комментарий     Решение

Задача 111602

Темы:   [ Симметрия помогает решить задачу ]
[ Неравенство треугольника ]
[ Наибольшая или наименьшая длина ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

Дан равносторонний треугольник ABC. Точка K – середина стороны AB, точка M лежит на стороне BC, причём  BM : MC = 1 : 3.  На стороне AC выбрана точка P так, что периметр треугольника PKM – наименьший из возможных. В каком отношении точка P делит сторону AC?

Прислать комментарий     Решение

Задача 115351

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

Четырёхугольник ABCD вписан в окружность с диаметром AC. Точки K и M – проекции вершин A и C соответственно на прямую BD. Через точку K проведена прямая, параллельная BC и пересекающая AC в точке P. Докажите, что угол KPM – прямой.

Прислать комментарий     Решение

Задача 66687

Темы:   [ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 8,9,10,11

В окружности $\omega$, описанной около треугольника $ABC$, хорда $KL$ проходит через середину $M$ отрезка $AB$ и перпендикулярна ей. Некоторая окружность проходит через точки $L$ и $M$ и пересекает отрезок $CK$ в точках $P$ и $Q$ ($Q$ лежит на отрезке $KP$). Пусть $LQ$ пересекает описанную окружность треугольника $KMQ$ в точке $R$. Докажите, что четырехугольник $APBR$ вписанный.
Прислать комментарий     Решение


Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .