ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 499]      



Задача 108696

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

В треугольнике ABC на сторонах AB , BC и AC соответственно точки K , L и M , причём BLK = CLM = BAC . Отрезки BM и CK пересекаются в точке P . Докажите, что четырёхугольник AKPM – вписанный.
Прислать комментарий     Решение


Задача 108923

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

В треугольнике проведены биссектрисы AL и BM . Известно, что одна из точек пересечения описанных окружностей треугольников ACL и BCM лежит на отрезке AB . Докажите, что ACB=60o .
Прислать комментарий     Решение


Задача 108932

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 4
Классы: 8,9

Диагонали вписанного четырёхугольника ABCD пересекаются в точке O . Точка O' , симметричная точке O относительно прямой AD , лежит на описанной окружности четырёхугольника. Докажите, что O'O – биссектриса угла BO'C .
Прислать комментарий     Решение


Задача 109037

Темы:   [ Окружность, вписанная в угол ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

MA и MB – касательные к окружности O,; C – точка внутри окружности, лежащая на дуге AB с центром в точке M . Доказать, что отличные от A и B точки пересечения прямых AC и BC с окружностью O лежат на противоположных концах одного диаметра.
Прислать комментарий     Решение


Задача 110834

Темы:   [ Теорема синусов ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
Сложность: 4
Классы: 8,9

Равнобедренный треугольник ABC ( AB=BC ) вписан в окружность. Прямая CD , перпендикулярная AB , пересекает окружность в точке P . Касательная к окружности, проходящая через точку P , пересекает прямую AB в точке Q . Найдите отрезки PA и PQ , если AC=5 , ABC = 2 arccos .
Прислать комментарий     Решение


Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .