ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

a ≡ 68 (mod 1967),   a ≡ 69 (mod 1968).  Найти остаток от деления a на 14.

Вниз   Решение


Основания трапеции равны 1 и 6, а диагонали — 3 и 5. Под каким углом видны основания из точки пересечения диагоналей?

Вверх   Решение

Задачи

Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 490]      



Задача 98226

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Соображения непрерывности ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Перестройки ]
Сложность: 5-
Классы: 8,9

Рассматривается произвольный многоугольник (возможно, невыпуклый).
  а) Всегда ли найдётся хорда этого многоугольника, которая делит его площадь пополам?
  б) Докажите, что найдётся такая хорда, что площадь каждой из частей, на которые она разбивает многоугольник, не меньше чем ⅓ площади всего многоугольника.

  в) Можно ли в пункте б) заменить число ⅓ на большее?
(Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур).

Прислать комментарий     Решение

Задача 98353

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Соображения непрерывности ]
[ Наименьшая или наибольшая площадь (объем) ]
[ Выпуклые многоугольники ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

Контуры выпуклых многоугольников F и G не имеют общих точек, причём G расположен внутри F. Хорду многоугольника F – отрезок, соединяющий две точки контура F, назовём опорной для G, если она пересекается с G только по точкам контура: содержит либо только вершину, либо сторону G.
  а) Докажите, что найдётся опорная хорда, середина которой принадлежит контуру G.
  б) Докажите, что найдутся две такие хорды.

Прислать комментарий     Решение

Задача 107856

Темы:   [ Метод координат на плоскости ]
[ Системы линейных уравнений ]
[ Принцип крайнего (прочее) ]
[ Линейная и полилинейная алгебра ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

На отрезке  [0, 1]  отмечено несколько различных точек. При этом каждая отмеченная точка расположена либо ровно посередине между двумя другими отмеченными точками (не обязательно соседними с ней), либо ровно посередине между отмеченной точкой и концом отрезка. Докажите, что все отмеченные точки рациональны.

Прислать комментарий     Решение

Задача 109498

Темы:   [ Турниры и турнирные таблицы ]
[ Принцип Дирихле (прочее) ]
[ Принцип крайнего (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Перебор случаев ]
Сложность: 5-
Классы: 8,9,10,11

В однокруговом футбольном турнире играли  n > 4  команд. За победу давалось 3 очка, за ничью 1, за проигрыш 0. Оказалось, что все команды набрали поровну очков.
  а) Докажите, что найдутся четыре команды, имеющие поровну побед, поровну ничьих и поровну поражений.
  б) При каком наименьшем n могут не найтись пять таких команд?

Прислать комментарий     Решение

Задача 109660

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Принцип крайнего (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5-
Классы: 8,9,10

Автор: Храмцов Д.

В клетках таблицы 10×10 расставлены числа 1, 2, 3, ..., 100 так, что сумма любых двух соседних чисел не превосходит S.
Найдите наименьшее возможное значение S. (Числа называются соседними, если они стоят в клетках, имеющих общую сторону.)

Прислать комментарий     Решение

Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 490]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .