ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 538]      



Задача 109419

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Найдите объём правильной треугольной пирамиды с высотой, h и углом γ между боковыми гранями.
Прислать комментарий     Решение


Задача 109420

Темы:   [ Правильная пирамида ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

Найдите объём правильной треугольной пирамиды с высотой h и плоским углом ϕ при вершине пирамиды.
Прислать комментарий     Решение


Задача 110240

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
[ Построения на проекционном чертеже ]
[ Построение сечений ]
Сложность: 3
Классы: 10,11

Через середину высоты правильной четырёхугольной пирамиды проведено сечение, перпендикулярное боковому ребру. Найдите площадь этого сечения, если боковое ребро равно 4, а угол между боковыми рёбрами, лежащими в одной грани, равен .
Прислать комментарий     Решение


Задача 110241

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
[ Построения на проекционном чертеже ]
Сложность: 3
Классы: 10,11

В правильной четырёхугольной пирамиде с боковым ребром, равным 20, угол между боковыми рёбрами, лежащими в одной грани, равен . Через точку, лежащую на одном из боковых рёбер, проведена прямая, перпендикулярная этому ребру и пересекающая высоту пирамиды. Найдите длину отрезка этой прямой, лежащего внутри пирамиды, если точка пересечения этой прямой с высотой делит высоту на две части в отношении 3:7, считая от вершины.
Прислать комментарий     Решение


Задача 110242

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
[ Построения на проекционном чертеже ]
Сложность: 3
Классы: 10,11

В правильной четырёхугольной пирамиде, сторона основания которой равна 6, а угол между боковыми рёбрами, лежащими в одной грани, равен , проведено сечение, перпендикулярное боковому ребру и делящее высоту в отношении 1:2, считая от вершины. Найдите периметр сечения.
Прислать комментарий     Решение


Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 538]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .