ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 538]      



Задача 34959

Темы:   [ Пирамида (прочее) ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 3+
Классы: 10,11

Можно ли расставить на ребрах 5-угольной пирамиды стрелки, так что сумма всех образовавшихся 10 векторов была бы равна 0.
Прислать комментарий     Решение


Задача 76416

Тема:   [ Пирамида (прочее) ]
Сложность: 3+
Классы: 10,11

Пирамида, все боковые рёбра которой наклонены к плоскости основания под углом $ \varphi$, имеет в основании равнобедренный треугольник с углом $ \alpha$, заключённым между равными сторонами. Определить двугранный угол при ребре, соединяющем вершину пирамиды с вершиной угла $ \alpha$.
Прислать комментарий     Решение


Задача 66142

Темы:   [ Пирамида (прочее) ]
[ Перпендикулярные плоскости ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Какое наибольшее количество граней n-угольной пирамиды может быть перпендикулярно основанию?

Прислать комментарий     Решение

Задача 109486

Темы:   [ Пирамида (прочее) ]
[ Теорема синусов ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Вписанные и описанные окружности ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

В основании A1A2...An пирамиды SA1A2...An лежит точка O, причём  SA1 = SA2 = ... = SAn  и  ∠SA1O =  ∠SA2O = ... = ∠SAnO.
При каком наименьшем значении n отсюда следует, что SO – высота пирамиды?

Прислать комментарий     Решение

Задача 67294

Темы:   [ Правильная пирамида ]
[ Против большей стороны лежит больший угол ]
[ Соображения непрерывности ]
[ Построения в пространстве (прочее) ]
Сложность: 4
Классы: 10,11

Дана треугольная пирамида $SABC$, основание которой – равносторонний треугольник $ABC$, а все плоские углы при вершине $S$ равны $\alpha$. При каком наименьшем $\alpha$ можно утверждать, что эта пирамида правильная?
Прислать комментарий     Решение


Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 538]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .