Страница:
<< 8 9 10 11 12
13 14 >> [Всего задач: 68]
|
|
Сложность: 4- Классы: 9,10,11
|
Прямоугольник разбили на несколько меньших прямоугольников. Могло ли оказаться, что для каждой пары полученных прямоугольников отрезок, соединяющий их центры, пересекает еще какой-нибудь прямоугольник?
|
|
Сложность: 4- Классы: 10,11
|
Внутри круга отмечены 100 точек, никакие три из которых не лежат на одной прямой.
Докажите, что их можно разбить на пары и провести прямую через каждую пару так, чтобы все точки пересечения прямых были в круге.
|
|
Сложность: 4 Классы: 10,11
|
Внутри выпуклого многогранника выбрана точка P и несколько прямых l1, ..., ln, проходящих через P и не лежащих в одной плоскости. Каждой грани многогранника поставим в соответствие ту из прямых l1, ..., ln, которая образует наибольший угол с плоскостью этой грани (если таких прямых несколько, выберем любую из них). Докажите, что найдётся грань, которая пересекается с соответствующей ей прямой.
|
|
Сложность: 5- Классы: 9,10,11
|
Выпуклый многоугольник
M переходит в себя при повороте
на угол
90
o . Докажите, что найдутся два круга с отношением радиусов,
равным
, один из которых содержит
M , а другой содержится
в
M .
|
|
Сложность: 5- Классы: 8,9,10,11
|
В некотором государстве было 2002 города, соединённых дорогами так, что если запретить проезд через любой из городов, то из каждого из оставшихся городов можно добраться до любого другого. Каждый год король выбирает некоторый несамопересекающийся циклический маршрут и приказывает построить новый город, соединить его дорогами со всеми городами выбранного маршрута, а все дороги этого маршрута закрыть за ненадобностью. Через несколько лет в стране не осталось ни одного несамопересекающегося циклического маршрута, проходящего по ее городам. Докажите, что в этот момент количество городов, из которых выходит ровно одна дорога, не меньше 2002.
Страница:
<< 8 9 10 11 12
13 14 >> [Всего задач: 68]