Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 144]
Внутри квадрата
ABCD расположен квадрат
KMXY.
Докажите, что середины отрезков
AK,
BM,
CX и
DY также являются
вершинами квадрата.
|
|
Сложность: 4 Классы: 7,8,9,10
|
На плоскости отметили n (n > 2) прямых, проходящих через одну точку O таким образом, что для каждых двух из них найдётся
такая отмеченная прямая, которая делит пополам одну из пар вертикальных углов,
образованных этими прямыми. Докажите, что проведённые прямые делят полный угол
на равные части.
|
|
Сложность: 4+ Классы: 8,9,10
|
Можно ли в клетки таблицы 9×9 записать натуральные числа от 1 до 81 так, чтобы сумма чисел в каждом квадрате 3×3 была одна и та же?
На сторонах произвольного выпуклого четырёхугольника внешним
образом построены квадраты. Докажите, что отрезки, соединяющие
центры противоположных квадратов, равны и перпендикулярны.
|
|
Сложность: 5- Классы: 10,11
|
Дан четырёхугольник KLMN. Окружность с центром O пересекает его сторону KL в точках A и A1, сторону LM в точках B и B1, и т.д. Докажите что
а) если описанные окружности треугольников KDA, LAB, MBC и NCD пересекаются в одной точке P, то описанные окружности треугольников KD1A1, LA1B1, MB1C1 и NC1D1 также пересекаются в одной точке Q;
б) точка O лежит на серединном перпендикуляре к PQ.
Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 144]