Страница:
<< 23 24 25 26 27 28
29 >> [Всего задач: 144]
|
|
Сложность: 3+ Классы: 7,8,9
|
Прямая отсекает треугольник AKN от правильного шестиугольника ABCDEF так, что AK + AN = AB.
Найдите сумму углов, под которыми отрезок KN виден из вершин шестиугольника (∠KAN + ∠KBN + ∠KCN + ∠KDN + ∠KEN + ∠KFN).
|
|
Сложность: 4- Классы: 8,9,10
|
Внутри прямоугольного треугольника построили две равные окружности так, что первая касается одного из катетов и гипотенузы, вторая касается другого катета и гипотенузы, а ещё эти окружности касаются друг друга. Пусть M и N – точки касания окружностей с гипотенузой. Докажите, что середина отрезка MN лежит на биссектрисе прямого угла треугольника.
|
|
Сложность: 4- Классы: 8,9,10
|
Две окружности пересекаются в точках A и B. Через точку A проведена прямая, вторично пересекающая первую окружность в точке C, а вторую – в точке D. Пусть M и N – середины дуг BC и BD, не содержащих точку A, а K – середина отрезка CD. Докажите, что угол MKN прямой. (Можно считать, что точки C и D лежат по разные стороны от точки A.)
|
|
Сложность: 4 Классы: 7,8,9,10,11
|
Две точки на плоскости несложно соединить тремя ломаными так, чтобы получилось два равных многоугольника (например, как на рис.). Соедините две точки четырьмя ломаными так, чтобы все три получившихся многоугольника были равны. (Ломаные несамопересекающиеся и не имеют общих точек, кроме концов.)
|
|
Сложность: 5- Классы: 9,10,11
|
Для каждой пары действительных чисел
a и
b рассмотрим последовательность
чисел
pn = [2{
an +
b}]. Любые
k подряд идущих членов этой
последовательности назовем словом. Верно ли, что любой упорядоченный набор из
нулей и единиц длины
k будет словом последовательности, заданной некоторыми
a и
b при
k = 4; при
k = 5?
Примечание: [c] - целая часть, {c} - дробная часть числа c.
Страница:
<< 23 24 25 26 27 28
29 >> [Всего задач: 144]