ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В королевстве восемь городов. Король хочет построить такую систему дорог, чтобы из каждого города можно было попасть в любой другой, минуя не более одного промежуточного города, и чтобы из каждого города выходило не более k дорог. При каких k это возможно? Докажите равенство Окружности S1 и S2 касаются внешним образом в точке F . Их общая касательная l касается S1 и S2 в точках A и B соответственно. Прямая, параллельная AB , касается окружности S2 в точке C и пересекает S1 в точках D и E . Докажите, что общая хорда окружностей, описанных около треугольников ABC и BDE , проходит через точку F . Можно ли таблицу 5×5 заполнить числами так, чтобы сумма чисел в каждой строке была положительной, а сумма чисел в каждом столбце – отрицательной? Точка D – середина бокового ребра CC1 треугольной призмы ABCA1B1C1 . Прямые AB1 , BC и DA1 попарно перпендикулярны. Найдите высоту призмы, если AB = BC= AB1 =a . Докажите, что n³ – n делится на 24 при любом нечётном n.
Сфера, касающаяся верхнего основания цилиндра, имеет единственную общую
точку с окружностью его нижнего основания и делит ось цилиндра в отношении
2:6:1, считая от центра одного из оснований. Найдите объём цилиндра, если
известно, что сфера касается двух его образующих, находящихся на
расстоянии Простые числа имеют только два различных делителя – единицу и само это число. А какие числа имеют только три различных делителя? Последовательность многочленов P0(x) = 1, P1(x) = x, P2(x) = x² – 1, ... задается условием
Pn+1(x) = xPn(x) – Pn–1(x). |
Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 329]
Найдите радиус окружности, внутри которой расположены две окружности радиуса r и одна окружность радиуса R так, что каждая окружность касается двух других.
На отрезке и двух его неравных частях длины 2a и 2b построены полуокружности, лежащие по одну сторону от отрезка. Найдите радиус окружности,касающейся трёх построенных полуокружностей.
Четыре окружности попарно касаются внешним
образом (в шести различных точках). Пусть
a , b , c , d — их радиусы,
a =
Окружности S1 и S2 касаются внешним образом в точке F . Прямая l касается S1 и S2 в точках A и B соответственно. Прямая, параллельная прямой l , касается S2 в точке C и пересекает S1 в двух точках. Докажите, что точки A , F и C лежат на одной прямой.
Окружности S1 и S2 касаются внешним образом в точке F . Их общая касательная l касается S1 и S2 в точках A и B соответственно. Прямая, параллельная AB , касается окружности S2 в точке C и пересекает S1 в точках D и E . Докажите, что общая хорда окружностей, описанных около треугольников ABC и BDE , проходит через точку F .
Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 329]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке