ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите тождество
Несколько команд сыграли между собой круговой турнир по волейболу. Будем говорить, что команда А сильнее команды B, если либо А выиграла у B, либо существует такая команда C, что А выиграла у C, а C – у B. Сфера, касающаяся нижнего основания цилиндра, имеет единственную общую точку с окружностью его верхнего основания и делит ось цилиндра в отношении 1:6:2, считая от центра одного из оснований. Найдите объём цилиндра, если известно, что сфера касается двух его образующих, находящихся на расстоянии 4 друг от друга. |
Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 378]
Ребро SB пирамиды SABC перпендикулярно плоскости ABC , AB=4 ,
BC=2 ,
Основание пирамиды SABCD – параллелограмм ABCD , точки M и N – середины рёбер SC и SD соответственно. Прямые SA , BM и CN попарно перпендикулярны. Найдите объём пирамиды, если SA=a , BM=b , CN=c .
Точка M – середина бокового ребра AA1 параллелепипеда
ABCDA1B1C1D1 . Прямые BD , MD1 и A1C попарно
перпендикулярны. Найдите высоту параллелепипеда, если BD=2a ,
BC=
Точка D – середина бокового ребра CC1 треугольной призмы ABCA1B1C1 . Прямые AB1 , BC и DA1 попарно перпендикулярны. Найдите высоту призмы, если AB = BC= AB1 =a .
В основании пирамиды SABC лежит треугольник ABC , у которого
AB=15
Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 378]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке