|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи а) В треугольнике ABC проведены высоты AA1, BB1 и CC1. Прямые AB и A1B1, BC и B1C1, CA и C1A1 пересекаются в точках C', A' и B'. Докажите, что точки A', B' и C' лежат на радикальной оси окружности девяти точек и описанной окружности. б) Биссектрисы внешних углов треугольника ABC пересекают продолжения противоположных сторон в точках A', B' и C'. Докажите, что точки A', B' и C' лежат на одной прямой, причем эта прямая перпендикулярна прямой, соединяющей центры вписанной и описанной окружностей треугольника ABC. |
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 330]
С помощью циркуля и линейки постройте треугольник по двум данным сторонам, если известно, что медианы, проведённые к этим сторонам, пересекаются под прямым углом.
На сторонах AB и BC треугольника ABC выбраны точки K и L соответственно, причём ∠KCB = ∠ LAB = α. Из точки B опущены перпендикуляры BD и BE на прямые AL и CK соответственно. Точка F – середина стороны AC. Найдите углы треугольника DEF.
На дуге AB есть произвольная точка M. Из середины K отрезка MB опущен перпендикуляр KP на прямую MA.
Основания трапеции равны 17 и 25. Найдите длину отрезка, соединяющего середины диагоналей.
Точки P и Q – середины оснований AD и BC
трапеции ABCD соответственно. Оказалось, что AB = BC, а точка P лежит на биссектрисе угла B.
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 330] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|