ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 1275]      



Задача 110987

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Отрезок BE является биссектрисой прямоугольного треугольника ABC ( A = 90o) . Окружность проходит через точки B , A , E и пересекает сторону BC в точке D так, что BD:BC=5:13 . Найдите отношение площади треугольника ABC к площади круга.
Прислать комментарий     Решение


Задача 110988

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Отрезок AE является медианой равнобедренного треугольника ABC ( AB= AC) . Окружность проходит через точки A , C , E и пересекает сторону AB в точке D так, что AD:AB=7:9 . Найдите отношение длины окружности к периметру треугольника ABC .
Прислать комментарий     Решение


Задача 111073

Темы:   [ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Вписанная в треугольник ABC окружность радиуса 1 касается его сторон AB , BC и AC соответственно в точках K , M и N . Известно, что MKN = ABC = 45o . Найдите стороны треугольника ABC .
Прислать комментарий     Решение


Задача 111074

Темы:   [ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Вписанная в треугольник ABC окружность касается его сторон AB , BC и AC соответственно в точках K , M и N . Известно, что AC=1 , а углы MKN и ABC равны соответственно 45o и 30o . Найдите радиус окружности.
Прислать комментарий     Решение


Задача 111088

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Окружность с центром на диагонали AC трапеции ABCD ( BC || AD ) проходит через вершины A и B , касается стороны CD в точке C и пересекает основание AD в точке E . Найдите площадь трапеции ABCD , если CD=6 , AE=8 .
Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .