ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 101]      



Задача 111630

Темы:   [ Перегруппировка площадей ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Параллелограммы ]
Сложность: 4
Классы: 8,9

Стороны AB и CD параллелограмма ABCD площади 1 разбиты на n равных частей, AD и BC – на m равных частей. Точки деления соединены так, как показано на рис.1. Чему равны площади образовавшихся при этом маленьких параллелограммов?
Прислать комментарий     Решение


Задача 111653

Темы:   [ Перегруппировка площадей ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

Перпендикуляры, опущенные из внутренней точки равностороннего треугольника на его стороны, и отрезки, соединяющие эту точку с вершинами, разбивают треугольник на шесть прямоугольных треугольников. Докажите, что сумма площадей трёх из них, взятых через один, равна сумме площадей трёх остальных.
Прислать комментарий     Решение


Задача 111663

Темы:   [ Перегруппировка площадей ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9

Шестиугольник ABCDEF вписан в окружность. Диагонали AD , BE и CF являются диаметрами этой окружности. Докажите, что площадь шестиугольника ABCDEF равна удвоенной площади треугольника ACE .
Прислать комментарий     Решение


Задача 116296

Темы:   [ Перегруппировка площадей ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

Перпендикуляры, опущенные из внутренней точки равностороннего треугольника, на его стороны, и отрезки, соединяющие эту точку с вершинами, разбивают треугольник на шесть прямоугольных треугольников. Докажите, что сумма площадей трёх из них, взятых через один, равна сумме площадей трёх остальных.
Прислать комментарий     Решение


Задача 55133

Темы:   [ Перегруппировка площадей ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4+
Классы: 8,9

Три прямые, параллельные сторонам треугольника ABC и проходящие через одну точку, отсекают от треугольника ABC трапеции. Три диагонали этих трапеций, не имеющие общих концов, делят треугольник на семь частей, из которых четыре — треугольники. Докажите, что сумма площадей трёх из этих треугольников, прилегающих к сторонам треугольника ABC, равна площади четвёртого.

Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .