ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 160 161 162 163 164 165 166 >> [Всего задач: 1308]
Пете и Васе подарили одинаковые наборы из N гирь, в которых массы любых двух гирь различаются не более, чем в 1,25 раз. Пете удалось разделить все гири своего набора на 10 равных по массе групп, а Васе удалось разделить все гири своего набора на 11 равных по массе групп. Найдите наименьшее возможное значение N.
Двое играющих по очереди пишут – каждый на своей половине доски – по одному натуральному числу (повторения разрешаются) так, чтобы сумма всех чисел на доске не превосходила 10000. После того, как сумма всех чисел на доске становится равной 10000, игра заканчивается подсчетом суммы всех цифр на каждой половине. Выигрывает тот, на чьей половине сумма цифр меньше (при равных суммах – ничья). Может ли кто-нибудь из игроков выиграть, как бы ни играл противник?
Шашка бьёт шашку соперника, стоящую на соседнем поле, если следующее за ним поле свободно. При этом своя шашка перемещается на это свободное поле, а побитая шашка соперника снимается с доски. Бить обязательно: если есть возможность бить, делать вместо этого простой ход какой-либо шашкой нельзя. Если шашка, побившая шашку соперника, может сразу побить следующую его шашку, она должна продолжать бить тем же ходом. Кто — Белые или Чёрные — победят в этой игре вне зависимости от игры партнёра? Рассмотрите случаи: а) У игроков по одной шашке, поле длиной N>2 клеток; б) У игроков по две шашки, поле длиной N>4 клеток; в) У игроков по три шашки, поле длиной N>6 клеток; г) Дополнительное задание. Можно подумать, что численное преимущество решает исход игры. Придумайте и нарисуйте, однако, позицию, где у Белых меньше шашек, чем у Чёрных, и тем не менее, Белые начинают (с простого хода) и выигрывают.
В Академии Наук 999 академиков. Каждая научная тема интересует ровно троих академиков, и у каждых двух академиков есть ровно одна тема, интересная им обоим. Докажите, что можно выбрать 250 тем из их общей области научных интересов так, чтобы каждый академик интересовался не более чем одной из них.
Страница: << 160 161 162 163 164 165 166 >> [Всего задач: 1308] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|