ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Шноль Д.Э.

Kаждый из двух подобных треугольников разрезали на два треугольника так, что одна из получившихся частей одного треугольника подобна одной из частей другого треугольника. Bерно ли, что оставшиеся части также подобны?

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 60]      



Задача 54079

Темы:   [ Удвоение медианы ]
[ Признаки и свойства параллелограмма ]
Сложность: 2+
Классы: 8,9

На продолжении медианы AM треугольника ABC за точку M отложен отрезок MD, равный AM. Докажите, что четырёхугольник ABDC — параллелограмм.

Прислать комментарий     Решение


Задача 53400

Темы:   [ Удвоение медианы ]
[ Равные треугольники. Признаки равенства ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

В треугольнике ABC медиана AM продолжена за точку M на расстояние, равное AM.
Найдите расстояние от полученной точки до вершин B и C, если  AB = 4,  AC = 5.

Прислать комментарий     Решение

Задача 54305

Темы:   [ Удвоение медианы ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

В треугольнике ABC медиана  BD = AB,  а  ∠DBC = 90°.  Найдите угол ABD.

Прислать комментарий     Решение

Задача 115463

Темы:   [ Удвоение медианы ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

В треугольнике АВС медиана ВМ в два раза меньше стороны АВ и образует с ней угол 40°. Найдите угол АВС.

Прислать комментарий     Решение

Задача 55265

Темы:   [ Удвоение медианы ]
[ Теорема о сумме квадратов диагоналей ]
Сложность: 3
Классы: 8,9

В равнобедренном треугольнике с боковой стороной, равной 4, проведена медиана к боковой стороне. Найдите основание треугольника, если медиана равна 3.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 60]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .