Страница:
<< 92 93 94 95
96 97 98 >> [Всего задач: 499]
В треугольнике ABC с углом A, равным 40° и стороной
AB = на высоте AH взята такая точка D, что ∠BDC = 140° и CD = 1.
Найдите угол между прямыми AB и CD, а также угол B.
B трапеции ABCD AB = BC = CD, CH – высота. Докажите, что перпендикуляр, опущенный из H на AC, проходит через середину BD.
Точка E лежит на стороне AC правильного треугольника ABC, K – середина отрезка AE. Прямая, проходящая через точку E перпендикулярно прямой AB, и прямая, проходящая через точку C перпендикулярно прямой BC, пересекаются в точке D. Найдите углы треугольника BKD.
|
|
Сложность: 4- Классы: 9,10
|
Точка O – центр описанной окружности Ω остроугольного треугольника ABC. Описанная окружность ω треугольника AOC вторично пересекает стороны AB и BC в точках E и F. Оказалось, что прямая EF делит площадь треугольника ABC пополам. Найдите угол B.
|
|
Сложность: 4- Классы: 8,9,10
|
В треугольнике
ABC I и
Ia – центры вписанной и вневписанной окружностей,
A' точка описанной окружности, диаметрально противоположная
A, AA1 – высота. Докажите, что ∠
IA'Ia = ∠
IA1Ia.
Страница:
<< 92 93 94 95
96 97 98 >> [Всего задач: 499]