Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 501]
В треугольнике ABC угол A равен 60o . Пусть BB1 и CC1 —
биссектрисы этого треугольника. Докажите, что точка,
симметричная вершине A относительно прямой B1C1 , лежит на стороне BC .
[Теорема о бабочке]
|
|
Сложность: 5- Классы: 8,9
|
Через середину C произвольной хорды AB окружности проведены
две хорды KL и MN (точки K и M лежат по одну сторону от AB). Отрезок KN пересекает AB в точке P. Отрезок LM пересекает AB в точке Q. Докажите, что PC = QC.
|
|
Сложность: 5- Классы: 10,11
|
В остроугольном неравнобедренном треугольнике ABC высоты CC1 и BB1 пересекают прямую, проходящую через вершину A и параллельную прямой BC, в точках P и Q. Пусть A0 – середина стороны BC, а AA1 – высота. Прямые A0C1 и A0B1 пересекают прямую PQ в точках K и L. Докажите, что описанные окружности треугольников PQA1, KLA0, A1B1C1 и окружность с диаметром AA1
пересекаются в одной точке.
|
|
Сложность: 5- Классы: 9,10,11
|
Неравнобедренный треугольник ABC вписан в окружность с центром O и описан около окружности с центром I. Точка B', симметричная точке B относительно прямой OI, лежит внутри угла ABI. Докажите, что касательные к описанной окружности треугольника BB'I, проведённые в точках B' и I, пересекаются на прямой AC.
Дан выпуклый четырёхугольник ABCD. Пусть I и J – центры окружностей, вписанных в треугольники ABC и ADC соответственно, а Ia и Ja – центры вневписанных окружностей треугольников ABC и ADC, вписанных в углы BAC и DAC соответственн). Докажите, что точка K пересечения прямых IJa и JIa лежит на биссектрисе угла BCD.
Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 501]