Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 501]      



Задача 111799

Темы:   [ Поворотная гомотетия (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Четыре точки, лежащие на одной окружности ]
[ Свойства биссектрис, конкуррентность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Подобные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 9,10,11

На диагонали BD вписанного четырёхугольника ABCD выбрана такая точка K, что  ∠AKB = ∠ADC.  Пусть I и I' – центры вписанных окружностей треугольников ACD и ABK соответственно. Отрезки II' и BD пересекаются в точке X. Докажите, что точки A, X, I, D лежат на одной окружности.

Прислать комментарий     Решение

Задача 115650

Темы:   [ Вспомогательная окружность ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
Сложность: 4
Классы: 8,9

Прямые, касающиеся окружности Ω в точках A и B, пересекаются в точке O. Точка I – центр Ω. На меньшей дуге AB окружности Ω выбрана точка C, отличная от середины дуги. Прямые AC и OB пересекаются в точке D, а прямые BC и OA – в точке E. Докажите, что центры описанных окружностей треугольников ACE, BCD и OCI лежат на одной прямой.

Прислать комментарий     Решение

Задача 66225

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Прямая Симсона ]
[ Описанные четырехугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4+
Классы: 9,10

Автор: Панов М.Ю.

На диагонали AC вписанного четырёхугольника ABCD взяли произвольную точку P и из неё опустили перпендикуляры PK, PL, PM, PN, PO на прямые AB, BC, CD, DA, BD соответственно. Докажите, что расстояние от P до KN равно расстоянию от O до ML.

Прислать комментарий     Решение

Задача 111715

Темы:   [ Описанные четырехугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Диаметр, основные свойства ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4+
Классы: 8,9,10

Четырехугольник ABCD описан около окружности с центром I . Докажите, что проекции точек B и D на прямые IA и IC лежат на одной окружности.
Прислать комментарий     Решение


Задача 52421

Темы:   [ Прямая Симсона ]
[ Вспомогательная окружность ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 5-
Классы: 8,9,10

Докажите, что основания перпендикуляров, опущенных из произвольной точки описанной окружности на стороны треугольника (или их продолжения), лежат на одной прямой (прямая Симсона.)

Прислать комментарий     Решение


Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .