Страница:
<< 175 176 177 178
179 180 181 >> [Всего задач: 1006]
|
|
Сложность: 4 Классы: 8,9,10
|
На доске выписано (n – 1)n выражений: x1 – x2, x1 – x3, ..., x1 – xn, x2 – x1, x2 – x3, ..., x2 – xn, ..., xn – xn–1, где n ≥ 3. Лёша записал в тетрадь все эти выражения, их суммы по два различных, по три различных и т. д. вплоть до суммы всех выражений. При этом Лёша во всех выписываемых суммах приводил подобные слагаемые (например, вместо (x1 – x2) +
(x2 – x3) Лёша запишет x1 – x3, а вместо (x1 – x2) + (x2 – x1) он запишет 0).
Сколько выражений Лёша записал в тетрадь ровно по одному разу?
На пульте имеется несколько кнопок, с помощью которых осуществляется управление
световым табло. После нажатия любой кнопки некоторые лампочки на табло
переключаются (для каждой кнопки есть свой набор лампочек, причём наборы могут
пересекаться). Доказать, что число состояний, в которых может находиться
табло, равно некоторой степени числа 2.
[Формула для чисел Каталана]
|
|
Сложность: 4+ Классы: 8,9,10,11
|
а) Пусть {a1, a2,..., an} – последовательность целых чисел, сумма которых равна 1. Докажите, что ровно у одного из ее циклических сдвигов
{a1, a2, ..., an}, {a2, ..., an, a1}, ..., {an, a1, ..., an–1} все частичные суммы (от начала до произвольного элемента) положительны.
б) Выведите отсюда равенства: где (4n – 2)!!!! = 2·6·10·...(4n – 2) – произведение, в котором участвует каждое четвёртое число.
Определение чисел Каталана Cn смотри в
справочнике.
|
|
Сложность: 4+ Классы: 9,10,11
|
На борту авиалайнера 2n пассажиров, и авиакомпания загрузила для них n порций питания с курицей и n порций с рыбой. Известно, что пассажир с вероятностью 0,5 предпочитает курицу и с вероятностью 0,5 – рыбу. Назовём пассажира недовольным, если ему осталось не то, что он предпочитает.
а) Найдите наиболее вероятное число недовольных пассажиров.
б) Найдите математическое ожидание числа недовольных пассажиров.
в) Найдите дисперсию числа недовольных пассажиров.
|
|
Сложность: 4+ Классы: 9,10,11
|
В стране больше 101 города. Столица соединена авиалиниями со 100 городами, а каждый город, кроме столицы, соединён авиалиниями ровно с десятью городами (если A соединён с B, то B соединён с A). Известно, что из каждого города можно попасть в любой другой (может быть, с пересадками). Доказать, что можно закрыть половину авиалиний, идущих из столицы, так, что возможность попасть из каждого города в любой другой сохранится.
Страница:
<< 175 176 177 178
179 180 181 >> [Всего задач: 1006]