Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 460]
|
|
Сложность: 3- Классы: 8,9,10
|
В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BM и CN пересекаются в точке O. Найдите площадь треугольника BOC.
|
|
Сложность: 3- Классы: 8,9,10
|
На сторонах AB, BC, CD и AD выпуклого четырёхугольника ABCD расположены точки M, N, K и L соответственно, причём AM : MB = 3 : 2, CN : NB = 2 : 3, CK = KD и AL : LD = 1 : 2. Найдите отношение площади шестиугольника MBNKDL к площади четырёхугольника ABCD.
Через середину M стороны BC параллелограмма ABCD, площадь
которого равна 1, и вершину A проведена прямая, пересекающая диагональ BD в точке O. Найдите площадь четырёхугольника OMCD.
Прямая, параллельная основанию треугольника, делит его на части, площади которых относятся как 2 : 1, считая от вершины. В каком отношении она делит боковые стороны?
Через точки R и E, принадлежащие сторонам AB и AD
параллелограмма ABCD и такие, что AR = ⅔ AB,
AE = ⅓ AD, проведена прямая.
Найдите отношение площади параллелограмма к площади полученного треугольника.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 460]