Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 217]
Даны точки A, B и положительное число d. Найдите
геометрическое место точек M, для которых
AM2 + BM2 = d.
|
|
Сложность: 3+ Классы: 8,9,10
|
Диаметры
AB и
CD окружности
S перпендикулярны.
Хорда
EA пересекает диаметр
CD в точке
K, хорда
EC пересекает
диаметр
AB в точке
L. Докажите, что если
CK :
KD = 2 : 1,
то
AL :
LB = 3 : 1.
Докажите, что прямые, заданные уравнениями
y = k1x + l1 и
y = k2x + l2 и не параллельные координатным осям, перпендикулярны
тогда и только тогда, когда
k1k2 = - 1.
|
|
Сложность: 3+ Классы: 10,11
|
В правильной треугольной пирамиде ABCD длина бокового ребра равна
12, а угол между основанием ABC и боковой гранью равен
. Точки K,
M, N – середины рёбер AB, CD,
AC соответственно. Точка E лежит на отрезке KM и 2ME
= KE. Через точку E проходит плоскость П перпендикулярно отрезку
KM. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь
сечения пирамиды плоскостью П и расстояние от точки N до плоскости П.
|
|
Сложность: 3+ Классы: 10,11
|
В правильной треугольной пирамиде ABCD сторона основания
ABC равна 4, угол между плоскостью основания ABC и боковой гранью равен
. Точки K, M,
N – середины отрезков AB, DK, AC соответственно,
точка E лежит на отрезке CM и 5ME = CE. Через точку E
проходит плоскость П перпендикулярно отрезку CM. В каком отношении плоскость
П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние
от точки N до плоскости П.
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 217]