Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 96]
|
|
Сложность: 3 Классы: 8,9,10
|
Даны десять положительных чисел, каждые два из которых различны. Докажите, что среди них найдутся либо три числа, произведение которых больше произведения каких-нибудь двух из оставшихся, либо три числа, произведение которых больше произведения каких-нибудь четырёх из оставшихся.
|
|
Сложность: 3 Классы: 8,9,10
|
В стране Далёкой провинция называется крупной, если в ней живёт более 7% жителей этой страны. Известно, что для каждой крупной провинции найдутся такие две провинции с меньшим населением , что их суммарное население больше, чем у этой крупной провинции. Какое наименьшее число провинций может быть в стране Далёкой?
Даны 10 натуральных чисел, не превышающих 91. Докажите, что отношение некоторых двух из этих чисел принадлежит отрезку [2/3, 3/2].
|
|
Сложность: 3+ Классы: 8,9,10
|
Решить в целых числах уравнение 1/a + 1/b + 1/c = 1.
k, l, m – натуральные числа. Докажите, что 2k+l + 2k+m + 2l+m ≤ 2k+l+m+1 + 1.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 96]