ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Построить треугольник по двум сторонам так, чтобы медианы этих сторон были взаимно перпендикулярны. Сколько корней имеет уравнение sin x=x/100 ? Доказать, что если в треугольной пирамиде две высоты пересекаются, то две другие высоты также пересекаются. На окружности даны три точки A,B,C . Построить (циркулем и линейкой) на этой окружности четвёртую точку D так, чтобы в полученный четырёхугольник можно было бы вписать окружность. Есть прямоугольный стол. Два игрока начинают по очереди класть на него по одному евро так, чтобы эти монеты не перекрывали друг друга. Кто не может сделать ход - проигрывает. Кто выиграет при правильной игре? Сторона основания ABCD правильной пирамиды SABCD равна
1) объём пирамиды CMSK; 2) угол между прямыми CM и SK; 3) расстояние между прямыми CM и SK. Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n. На третье занятие кружка по математике пришло 17 человек. Может ли случиться так, что каждая девочка знакома ровно с тремя из присутствующих на занятии кружковцев, а каждый мальчик ровно с пятью? Постройте треугольник по двум сторонам и медиане, проведённой к третьей стороне. Все грани треугольной пирамиды – прямоугольные треугольники. Наибольшее ребро равно a, а противоположное ребро равно b. Двугранный угол при наибольшем ребре равен α. Найдите объём пирамиды. а) Двое играют в такую игру: на столе лежат 7 монет по два фунта и 7 монет по одному фунту. За ход разрешается взять монет на сумму не более трех фунтов. Забравший последнюю монету выигрывает. Кто победит при правильной игре?
|
Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 401]
На одной стороне угла A взяты точки B, C, D, а на другой – точки E, F, G, так, что FD ⊥ BC, CG ⊥ EF, EC ⊥ BD, BF ⊥ EG. Отношение длины отрезка BE к расстоянию от точки A до центра описанной вокруг четырёхугольника BDGE окружности равно 20/17. Найдите величину угла A.
Дан остроугольный треугольник ABC. Точки B' и C' симметричны соответственно вершинам B и C относительно прямых AC и AB. Пусть P – точка пересечения описанных окружностей треугольников ABB' и ACC', отличная от A. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PA.
Вокруг равнобедренного треугольника ABC с основанием AC описана окружность ω. Точка F – ортоцентр треугольника ABC; продолжение высоты CE пересекает ω в точке G. Докажите, что высота AD является касательной к описанной окружности треугольника GBF.
В треугольнике KLM точка B — центр вписанной окружности, а
точка C — центр окружности, описанной около треугольника KLM.
Прямая BC перпендикулярна биссектрисе MB треугольника KLM.
Известно, что угол BMC равен
Четырёхугольная пирамида SABCD вписана в сферу. Из вершин A, B, C, D опущены перпендикуляры AA1, BB1, CC1, DD1 на прямые SC, SD, SA, SB соответственно. Оказалось, что точки S, A1, B1, C1, D1 различны и лежат на одной сфере. Докажите, что точки A1, B1, C1, D1 лежат в одной плоскости.
Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 401]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке