Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Даны точки A и B. С центром в точке B проводятся окружности радиусом, не превосходящим AB, а через точку A — касательные к ним. Найдите геометрическое место точек касания.

Вниз   Решение


В прямоугольнике площади 1 расположено пять фигур площади ½ каждая. Докажите, что найдутся
  а) две фигуры, площадь общей части которых не меньше 3/20;
  б) две фигуры, площадь общей части которых не меньше ⅕;
  в) три фигуры, площадь общей части которых не меньше 1/20.

ВверхВниз   Решение


Город представляет из себя клетчатый прямоугольник, в каждой клетке стоит пятиэтажный дом. Закон о реновации позволяет выбрать две соседних по стороне клетки, в которых стоят дома, и снести тот дом, где меньше этажей (либо столько же). При этом над вторым домом надстраивается столько этажей, сколько было в снесённом доме. Какое наименьшее число домов можно оставить в городе, пользуясь законом о реновации, если город имеет размеры
  а) 20×20 клеток;
  б) 50×90 клеток?

ВверхВниз   Решение


Выполните построения с помощью линейки с двумя параллельными краями (двусторонней линейки) без циркуля.
а) Постройте биссектрису данного угла AOB.
б) Дан острый угол AOB. Постройте угол BOC, биссектрисой которого является луч OA.

ВверхВниз   Решение


Около треугольника AMB описана окружность, центр которой удалён от стороны AM на расстояние 10. Продолжение стороны AM за вершину M отсекает от касательной к окружности, проведённой через вершину B , отрезок CB , равный 29. Найдите площадь треугольника CMB , если известно, что угол ACB равен arctg .

ВверхВниз   Решение


Существуют ли такие десять попарно различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя
  а) ровно в шесть раз;
  б) ровно в пять раз?

Вверх   Решение

Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 563]      



Задача 53945

Темы:   [ Построения с помощью двусторонней линейки ]
[ Симметрия и построения ]
Сложность: 4-
Классы: 8,9

Постройте центр данной окружности с помощью двусторонней линейки, если известно, что ширина линейки меньше диаметра окружности.

Прислать комментарий     Решение


Задача 54639

Темы:   [ Построение треугольников по различным элементам ]
[ Симметрия помогает решить задачу ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9

Автор: Чичин В.

Постройте треугольник по двум сторонам так, чтобы медиана, проведённая к третьей стороне, делила угол треугольника в отношении  1 : 2.

Прислать комментарий     Решение

Задача 55587

Темы:   [ Окружность, вписанная в угол ]
[ Симметрия помогает решить задачу ]
[ Биссектриса угла ]
Сложность: 4-
Классы: 8,9

Дана прямая l и точки A и B по одну сторону от нее. Найдите на прямой l такую точку M, чтобы луч MA был биссектрисой угла между лучом MB и одним из лучей с вершиной M, принадлежащих данной прямой l.

Прислать комментарий     Решение

Задача 55588

Темы:   [ Построение треугольников по различным точкам ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по данным серединам двух его сторон и прямой, на которой лежит биссектриса, проведённая к третьей стороне.

Прислать комментарий     Решение


Задача 55591

Темы:   [ Симметрия помогает решить задачу ]
[ Симметрия и построения ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по данным серединам двух его сторон и прямой, на которой лежит биссектриса, проведённая к одной из этих сторон.

Прислать комментарий     Решение


Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .