|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На плоскости даны точки A(1;2) , B(2;1) , C(3;-3) , D(0;0) . Они являются вершинами выпуклого четырёхугольника ABCD . В каком отношении точка пересечения его диагоналей делит диагональ AC ? В квадрате 7×7 клеток размещено 16 плиток размером 1×3 и одна плитка 1×1. От правильного октаэдра со стороной 1 отрезали шесть углов – пирамидок с квадратным основанием и ребром ⅓. Получился многогранник, грани которого – квадраты и правильные шестиугольники. Можно ли копиями такого многогранника замостить пространство?
В четырёхугольнике ABCD диагонали AC и BD пересекаются в точке
K. Точки L и M являются соответственно серединами сторон BC и
AD. Отрезок LM содержит точку K. Четырёхугольник ABCD таков, что в
него можно вписать окружность. Найдите радиус этой окружности, если
AB = 3,
AC =
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149]
Через точку M проведены две прямые. Одна из них касается некоторой окружности в точке A, а вторая пересекает эту окружность в точках B и C, причём BC = 7 и BM = 9. Найдите AM.
Из точки A проведены два луча, пересекающие данную окружность: один — в точках B и C, другой — в точках D и E. Известно, что AB = 7, BC = 7, AD = 10. Найдите DE.
Из одной точки проведены касательная и секущая к некоторой окружности.
Из точки A, лежащей вне окружности, проведены к окружности касательная и секущая. Расстояние от точки A до точки касания равно 16, а расстояние от точки A до одной из точек пересечения секущей с окружностью равно 32. Найдите радиус окружности, если расстояние от её центра до секущей равно 5.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|