Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

При всех значениях параметра a найдите число действительных корней уравнения  x³ – x – a = 0.

Вниз   Решение


Автор: Фольклор

Можно ли подобрать такие два натуральных числа X и Y, что Y получается из X перестановкой цифр, и  X + Y = 9...9  (1111 девяток)?

ВверхВниз   Решение


Назовём натуральное число n удобным, если  n² + 1  делится на 1000001. Докажите, что среди чисел 1, 2, ..., 1000000 чётное число удобных.

ВверхВниз   Решение


Центр O окружности радиуса 3 лежит на гипотенузе AC прямоугольного треугольника ABC. Катеты треугольника касаются окружности.
Найдите площадь треугольника ABC, если известно, что  OC = 5.

ВверхВниз   Решение


В треугольнике ABC угол B — прямой, величина угол C равен $ \alpha$ ( $ \alpha$ > $ {\frac{\pi}{4}}$), точка D — середина гипотенузы. Точка A1 симметрична точке A относительно прямой BD. Найдите угол BA1C.

ВверхВниз   Решение


  Определение. Пусть  α = (k, j, i)  – набор целых неотрицательных чисел,  k ≥ j ≥ i.  Через Tα(x, y, z) будем обозначать симметрический многочлен от трёх переменных, который есть по определению сумма одночленов вида xaybzc по всем шести перестановкам  (a, b, c)  набора  (k, j, i).
  Аналогично определяются многочлены Tα для произвольного количества переменных/чисел в наборе α.
  Запишите через многочлены вида Tα неравенства
  а)  x4y + y4x ≥ x³y² + x²y³;
  б)  x³yz + y³xz + z³xy ≥ x²y²z + y²z²x + z²x²y.

Вверх   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 401]      



Задача 53246

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4+
Классы: 8,9

В треугольнике KLM проведена биссектриса MN. Через вершину M проходит окружность, касающаяся стороны KL в точке N и пересекающая сторону KM в точке P, а сторону LM — в точке Q. Отрезки KP, QM и LQ соответственно равны k, m и q .Найдите MN.

Прислать комментарий     Решение


Задача 53691

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема синусов ]
Сложность: 5-
Классы: 8,9

Пусть R — радиус описанной окружности треугольника ABC, ra — радиус вневписанной окружности этого треугольника, касающейся стороны BC. Докажите, что квадрат расстояния между центрами этих окружностей равен R2 + 2Rra.

Прислать комментарий     Решение


Задача 52876

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Диаметр, хорды и секущие ]
Сложность: 2+
Классы: 8,9

Радиус окружности равен 13, хорда равна 10. Найдите её расстояние от центра.

Прислать комментарий     Решение

Задача 53908

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Хорды и секущие (прочее) ]
Сложность: 2+
Классы: 8,9

Докажите, что равные хорды удалены от центра окружности на равные расстояния.

Прислать комментарий     Решение

Задача 53935

Темы:   [ Вспомогательные равные треугольники ]
[ Диаметр, основные свойства ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 2+
Классы: 8,9

Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P.
Докажите, что треугольники APD и BPC равнобедренные.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .