ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 565]      



Задача 67207

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Диагонали прямоугольника $ABCD$ пересекаются в точке $E$. Окружность с центром в точке $E$ лежит внутри прямоугольника. Из вершин $C$, $D$, $A$ проведены касательные к окружности $CF$, $DG$, $AH$, причем $CF$ пересекает $DG$ в точке $I$, $EI$ пересекает $AD$ в точке $J$, а прямые $AH$ и $CF$ пересекаются в точке $L$. Докажите, что отрезок $LJ$ перпендикулярен $AD$.
Прислать комментарий     Решение


Задача 53944

Темы:   [ Построения одной линейкой ]
[ Симметрия помогает решить задачу ]
[ Диаметр, основные свойства ]
Сложность: 4-
Классы: 8,9

Дана окружность и две неравные параллельные хорды. Используя только линейку, разделите эти хорды пополам.

Прислать комментарий     Решение


Задача 53945

Темы:   [ Построения с помощью двусторонней линейки ]
[ Симметрия и построения ]
Сложность: 4-
Классы: 8,9

Постройте центр данной окружности с помощью двусторонней линейки, если известно, что ширина линейки меньше диаметра окружности.

Прислать комментарий     Решение


Задача 54639

Темы:   [ Построение треугольников по различным элементам ]
[ Симметрия помогает решить задачу ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9

Автор: Чичин В.

Постройте треугольник по двум сторонам так, чтобы медиана, проведённая к третьей стороне, делила угол треугольника в отношении  1 : 2.

Прислать комментарий     Решение

Задача 55587

Темы:   [ Окружность, вписанная в угол ]
[ Симметрия помогает решить задачу ]
[ Биссектриса угла ]
Сложность: 4-
Классы: 8,9

Дана прямая l и точки A и B по одну сторону от нее. Найдите на прямой l такую точку M, чтобы луч MA был биссектрисой угла между лучом MB и одним из лучей с вершиной M, принадлежащих данной прямой l.

Прислать комментарий     Решение

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 565]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .