ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 769]      



Задача 53083

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вспомогательные подобные треугольники ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

Около окружности описана равнобедренная трапеция ABCD. Меньшее основание BC касается окружности в точке M, боковая сторона CD – в точке N. Высота CE пересекает отрезок MN в точке P, причём  MP : PN = 2.  Найдите отношение  AD : BC.

Прислать комментарий     Решение

Задача 53175

Темы:   [ Подобные треугольники (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства касательной ]
Сложность: 3+
Классы: 8,9

Центр O окружности радиуса 3 лежит на гипотенузе AC прямоугольного треугольника ABC. Катеты треугольника касаются окружности.
Найдите площадь треугольника ABC, если известно, что  OC = 5.

Прислать комментарий     Решение

Задача 53179

Темы:   [ Площадь трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства касательной ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Окружность касается сторон AB и AD прямоугольника ABCD и пересекает сторону DC в единственной точке F и сторону BC в единственной точке E.
Найдите площадь трапеции AFCB, если  AB = 32,  AD = 40  и  BE = 1.

Прислать комментарий     Решение

Задача 54606

Темы:   [ Метод ГМТ ]
[ ГМТ - окружность или дуга окружности ]
[ Признаки и свойства касательной ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки через данную точку внутри круга проведите хорду, равную данному отрезку.

Прислать комментарий     Решение


Задача 57477

Темы:   [ Геометрические неравенства (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8

Автор: Фольклор

В угол с вершиной A вписана окружность, касающаяся сторон угла в точках B и C. В области, ограниченной отрезками AB, AC и меньшей дугой BC, расположен отрезок. Докажите, что его длина не превышает AB.

Прислать комментарий     Решение

Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .