ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 102]      



Задача 64486

Темы:   [ Четырехугольник (неравенства) ]
[ Параллелограмм Вариньона ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 10,11

Дан четырёхугольник АВСD площади 1. Из его внутренней точки О опущены перпендикуляры OK, OL, OM и ON на стороны АВ, ВС, CD и DA соответственно. Известно, что  AK ≥ KB,  BL ≥ LC,  CM ≥ MD  и  DN ≥ NA.  Найдите площадь четырёхугольника KLMN.

Прислать комментарий     Решение

Задача 108056

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь четырехугольника ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Автор: Фомин Д.

Во вписанном четырёхугольнике ABCD длины сторон BC и CD равны. Докажите, что площадь этого четырёхугольника равна  ½ AC² sin∠A.

Прислать комментарий     Решение

Задача 116334

Темы:   [ Вписанные и описанные окружности ]
[ Теорема синусов ]
[ Площадь четырехугольника ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9,10

В остроугольном треугольнике ABC  (AB < BC)  проведены высоты AM и CN. Точка O – центр описанной окружности треугольника ABC. Известно, что ∠ABC = β,  а площадь четырёхугольника NOMB равна S. Найдите сторону AC.

Прислать комментарий     Решение

Задача 109008

Темы:   [ Медиана делит площадь пополам ]
[ Перегруппировка площадей ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 8,9

На продолжении AB, BC, CD и DA сторон выпуклого четырёхугольника ABCD откладываются отрезки BB1=AB; CC1=BC; DD1=CD; AA1=AD . Доказать, что площадь четырёхугольника A1B1C1D1 в пять раз больше площади четырёхугольника ABCD .
Прислать комментарий     Решение


Задача 53251

Темы:   [ Теорема синусов ]
[ Две пары подобных треугольников ]
[ Площадь четырехугольника ]
Сложность: 4-
Классы: 8,9

Точки K, L, M делят стороны выпуклого четырёхугольника ABCD в отношении  AK : KB = CL : LB = CM : MD = 1 : 2.  Радиус описанной окружности треугольника KLM равен 5/2,  KL = 4,  LM = 3.  Какова площадь четырёхугольника ABCD, если известно, что  KM < KL?

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 102]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .